



## DISCLAIMER

This presentation is not and does not form part of any offer, invitation or recommendation in respect of securities. Any decision to buy or sell Memphasys securities or other products should be made only after seeking appropriate financial advice. Reliance should not be placed on information or opinions contained in this presentation and subject only to any legal obligation to do so, the Company does not accept any obligation to correct or update them.

This presentation does not take into consideration the investment objectives, financial situation or particular needs of any particular investor.

To the fullest extent permitted by law, Memphasys and its affiliates and their respective officers, directors, employees and agents, accept no responsibility for any information provided in this presentation, including any forward-looking information, and disclaim and liability whatsoever (including for negligence) for any loss howsoever arising from any use of this presentation or reliance on anything contained in or omitted from it or otherwise arising in connection with this presentation.

This presentation provides indicative timelines for various product development and commercialisation activities. These timelines are based on best current estimates, which are subject to change.





# CONTENTS

- 1. Who is Memphasys
- 2. Felix<sup>™</sup> System
- **RoXsta** 3.
- 4. Al Port
- 5. Reducing Methane (CH4) Emissions from ruminants through cost effective elite DNA multiplication
- 6. Financial Snapshot
- 7. Appendix



04 10 23 34

# 39

44



# 1. WHO IS MEMPHASYS



# **ALREADY COMMERCIALISED**

2

3

A reproductive biotechnology company <u>already</u> selling its first commercial product

> Diverse and innovative pipeline focusing on technology and market product gaps

Established distribution partners with globally recognised IVF leaders



# **UNDERPINNED BY STRONG FUNDAMENTALS**

Highly credentialled innovation team and an experienced board, executing commercialisation <u>strategy</u>

2

3

4

Exceptionally innovative and disruptive technology with clear pathways to commercialisation

Strategy is to work with key opinion leaders in early access, high sales potential markets to build sales, brand, user acceptance and networks

Developing a pipeline of high value premium reproductive products to deliver long-term shareholder value







## **OUR LEADERS**

Distinguished Emeritus Professor John Aitken

- Memphasys Scientific Director
- Global leader in reproductive biology, heading up world-class research team at University of Newcastle.
- Leads development of MEM's pipeline products through R&D, proof-of-concept to commercial strategy stage.
- \*Ranked #1 in the world in the cell biology of spermatozoa and germ cells, having published over 650 research articles and work cited >67,000 times\*\*.
- Exceptionally well connected at a GLOBAL level to researchers, laboratories and clinics operating throughout the international reproductive industry.



\*Source: Expertscape.com \*\*h-index of 120, highest citation index in his field and in the top 5% for all of Biology and Biochemistry





### **LEADERSHIP TEAM**

#### Experienced at bringing products to market

Acting CEO

**Robert Cook** Chairman



- 40 years' experience in healthcare management
- 7 years as MD & CEO of Healthscope, a leading private hospital, medical centre, and pathology company which was taken over by PE consortium for \$4.4B
- Completed numerous other healthcare M&A transactions

35 years' experience in Animal and Human health across research, discovery, clinical trials, medical affairs, medico-commercial strategy.

- PhD in Pharmacokinetics
- Managed BD activities and business units for global companies.
- Experienced the business end of pharmaceutical product prelaunch and launch strategy and product life cycle management.



Paul Wright NE Director

- More than 25 years' experience in development and sales of innovative medical devices and diagnostic tools.
- Specialised in commercialising early research products
- Served as CEO for three leading companies developing, manufacturing and marketing medical devices and diagnostic instruments
- 8 years in Business Strategy Consulting with Bain & Co.





NE Director

**Michael Atkins** 

- Involved with formation of, and capital raising for, and management of, many listed companies on the ASX, both as a Chairman/Director and as a corporate advisor.
- Most recently was a Senior Advisor to international stockbroker Canaccord Genuity in Australia.
- Prior to that spent + 16 years in senior corporate advisory roles with several Australian stockbrokers,, including 10 years as Director – Corporate Finance at Paterson Securities.
- Currently Chair of Castle Minerals Limited and NED of SRG Global Limited, both ASX listed.

Assoc. Prof Hassan Bakos **Director Operations** 



- 17 years' experience delivering research in the assisted reproductive technology (ART) industry
- 8 years as Scientific Director for Monash IVF (ASX: MVF)
- 3 years working with Prof John Aitken at the University of Newcastle



## **PRODUCT SUITE & PIPELINE**

#### **Felix<sup>TM</sup> Device** Sperm separation device for IVF Highly Early Market Regulated Access Proof of concept - $\checkmark$ Prototype development $\checkmark$ $\checkmark$ KOL Testing Clinical/field trials $\sim$ Sales **A**...

\* Formerly named ROSA; trademark application pending



| <b>RoXsta*</b><br>Rapid in vitro<br>antioxidant<br>assessment |                     | <b>Al Port</b><br>Ambient temp. semen<br>transport for animal<br>Artificial Insemination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Media<br>Development<br>Sperm<br>extension, transport and<br>cryopreservation |  |
|---------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Early<br>Access                                               | Highly<br>Regulated | Early Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Early Access for animal,<br>highly regulated for<br>human                     |  |
| <b>~</b>                                                      | <b>~</b>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |  |
| $\checkmark$                                                  | $\checkmark$        | Image: A state of the state | $\checkmark$                                                                  |  |
|                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |  |
|                                                               |                     | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |  |
|                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |  |



# **CROSS-OVER IN PRODUCT DEVELOPMENT**

#### **FELIX SYSTEM**

- Electrophoretic system selects sperm with both low DNA damage & oxidative stress
- Device consists of a console which supplies electricity to a disposable cartridge
- Cartridge contains the novel electrophoretic technology
- Cartridges are single-use with a new one required for each semen sample
- Ongoing, repeat revenue from single-use cartridge

# FELIX<sup>TM</sup>

Better technology for IVF sperm preparation

#### **AI PORT**

- Initial target: beef cattle growing need to improve genetics in high end cattle breeds e.g. wagyu, Black Angus
- Later applications: high end dairy, horse (non-thoroughbred), sheep and pigs
- Capacity to collect and transport at ambient temperature (once tested) should produce a better pregnancy / genetic outcome

AIPORT Increasing animal pregnancy rates, improve DNA, reduce emissions, with ambient temperature AI



# ROXSTA

A rapid in vitro antioxidant assessment

#### RoXsta

- Point of care diagnostic device
- Six-minute process
- Sensitive & accurate
- Wide sample fluid choice:
- Semen, blood, urine, saliva, follicular fluid and spent embryo culture medium
- More accurate disease profiling
- Timely clinical intervention

Cross-over in applications across all 3 products. Development of one product adds value to the other products. In some instances, a suite of products could be offered to industry











# 2. FELIX™ SYSTEM: BETTER TECHNOLOGY FOR IVF SPERM PREPARATION





#### **Global fertility decreasing – males account for** ~50%

• 1 in 6 couples experience fertility issues

Sperm dysfunction is the single most common cause of infertility

- Little progress in sperm processing for ART in over 40 years
- Sperm counts decreasing
- Sperm <u>DNA Damage</u> and <u>Oxidative Stress</u> are major contributors
- Solutions to identify or reduce the effect of oxidative stress and DNA damage are desperately needed



#### Average total fertility rate





# **FELIX<sup>™</sup> SYSTEM:**

#### Better technology for IVF sperm preparation

# Console Cartridge



Electrophoretic system selects sperm with both low DNA damage & oxidative stress

Device consists of a console which applies a controlled charge to a disposable cartridge

Cartridge contains the novel electrophoretic technology

Cartridges are single-use with a new one required for each semen sample

Ongoing, repeat revenue from single-use cartridge



#### **FELIX™ SYSTEM:** Advantages over traditional methods

#### **Conventional DGC (Density Gradient Centrifugation) and/or swim-up processes\***







# Felix<sup>™</sup> System

Rapid - six minutes Single vessel & automated Easy to train and operate Console & cartridge Consistent & operator independent Wider applications Minimised risk Reduced DNA damage





#### **FELIX<sup>™</sup> SYSTEM:** Commercialisation Strategy

#### **Global Opportunity - starts with early access markets**

- Initial focus rollout of commercial sales in early access markets
- Key achievements in early access markets will provide:
  - Clinical Data
  - Legitimise Application
  - Build Brand Profile
  - Build End User Certitude
  - Build a Trusted KOL Network
  - Tested and Proven Pathway
  - All the above will help to establishing sales in advanced markets Australia, USA, Europe and China

#### MEM working with large, trusted partners:

- Vitrolife in Japan, Canada and New Zealand
- Monash IVF in Australia



#### Initial focus is to build sales in four early access markets:

| Country        | Fresh IVF<br>Cycles in<br>2018 | Expected<br>fresh IVF<br>cycles by<br>2026 | % growth<br>rate | KOL<br>engaged in<br>market | % of<br>mark |
|----------------|--------------------------------|--------------------------------------------|------------------|-----------------------------|--------------|
| Japan          | 269,110                        | 699,110                                    | +160%            | $\checkmark$                | 14.59        |
| India          | 169,800                        | 489,840                                    | +188%            | $\checkmark$                | 9.2%         |
| Canada         | 6,360                          | 21,140                                     | +232%            | $\checkmark$                | 0.3%         |
| New<br>Zealand | 5,300                          | 11,190                                     | +111%            | $\checkmark$                | 0.3%         |

Source: Global IVF services Market 2019 - 2026 by Allied Market Research, 2018









# **FELIX<sup>™</sup> SYSTEM:**

Commercialisation Model – Japan with strategic partner Vitrolife









# **FELIX™ SYSTEM:**

Japan Early Access Market – expanding into Canada & New Zealand



Memphasys Director of Operations Professor Hassan Bakos with representatives from Vitrolife Japan KK



#### **Choosing the right partner – Vitrolife Japan KK** (subsidiary of the Vitrolife Group)

- Exclusive distribution agreement signed for a 5-year term
- Vitrolife Group is a world-leading global provider of medical devices, consumables and genetic testing services dedicated to the human IVF and reproductive health market
- Group employs 1,100 people across 33 countries and its products and services are available in more than 125 countries
- Has direct commercial engagement with ~90% of all IVF clinics in Japan
- Perfect synergistic partner for Memphasys and Felix<sup>TM</sup>
- Working closely with Memphasys to expand sales in Japan expanding into Canada and New Zealand
- Sales have commenced and are expanding

# **FELIX™ SYSTEM:**

Japan Early Access Market

#### Next Steps – Japan

- Japan's national insurance system currently covers IVF, but not the Felix System, which limits sales to approximately 20% of the market.
- Memphasys building clinical data sets and working with distributor to position Felix<sup>™</sup> for full insurance coverage in future.
- Ensure support from collaborating partner.
- Vitrolife advancing discussions with additional clinics.



# FELIX<sup>™</sup> SYSTEM:

Other Early Access Markets

#### **Next Steps – Other Markets**

- Eligible for sale in both Canada and New Zealand
- Distribution agreement in place with Vitrolife
- Vitrolife able to deploy <u>same model as in Japan</u>
- KOLs in both nations familiar with the Felix System
- Vitrolife advancing preliminary sales discussions with KOLS
- First sales in other markets anticipated in Q3 FY 2024
- Further eligible markets are under evaluation

#### Vitrolife - Trusted partner currently replicating Japanese model in Canada & New Zealand







# **FELIX<sup>TM</sup> SYSTEM:**

#### Major Regulated Markets 2024-2025\*

|           | Regulator | <b>Pre-submission</b> | <b>Clinical Trials</b>                                           | Comments                                                                                    | Recently published<br>data on IVF cycle<br>numbers |
|-----------|-----------|-----------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|
| Australia | TGA       | $\checkmark$          | $\checkmark$                                                     | Anticipated completion<br>of trial 4Q FY24                                                  | 102,157 (2021) <sup>1</sup>                        |
| India     | CDSCO     | $\checkmark$          | n/a Australian Clinical<br>trial anticipated to<br>be sufficient | In-country (TGA)<br>approval is standard<br>pathway Investigating<br>earlier access options | 337,000 (2021) <sup>2</sup>                        |
| EU        | MDR       |                       | n/a Australian Clinical<br>trial anticipated to<br>be sufficient | Application pending<br>post Australian trial<br>completion                                  | 588,762 (2019) <sup>3</sup>                        |
| China     | NMPA      | $\checkmark$          | TBD                                                              | Responding to NMPA's<br>technical & clinical<br>Queries. Seeking entry<br>via Hong Kong     | 1,305,967 (2022) <sup>4</sup>                      |
| USA       | FDA       | $\checkmark$          | In-Country clinical trial required                               | Will be a de novo FDA classification                                                        | 413,776 (2021) <sup>5</sup>                        |

Swim up: trials completed; DGC: trials 40% completed

\*Timetable is constantly being reviewed to expedite timeframe



- 1. Assisted reproductive technology in Australia and New Zealand 2021 University of NSW
- 2. <u>https://health.economictimes.indiatimes.com/news/industry/indian-fertility-industry-to-witness-huge-growth-in-coming-years/91487508</u>
- 3. https://academic.oup.com/humrep/article/38/12/2321/7320081
- 4. <u>https://www.globaldata.com/store/report/china-assisted-reproductive-technology-procedures-market-analysis/</u>
- 5. <u>https://www.cdc.gov/art/artdata/index.html</u>

## **FELIX<sup>TM</sup> PUBLICATIONS**

Memphasys has completed a number of published clinical studie sperm separation techniques. Studies include:

#### **Earlier prototype: CS-10**

C. Ainsworth, B. Nixon & R.J. Aitken Development of a novel electrophoretic system for the isolation of human spermatozoa, Human Reproduction, 2005

C. Ainsworth, et al., First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa, Human Reproduction, 2007

S.D. Fleming et al., Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation, Human Reproduction, 2008

C.J. Ainsworth, B. Nixon & R.J. Aitken The electrophoretic separation of spermatozoa: an analysis of genotype, surface carbohydrate composition and potential for capacitation, International Journal of Andrology, 2011

#### Current Prototype: Felix ™

F. Shapouri et al., A comparison between the Felix<sup>M</sup> electrophoretic system of sperm isolation and conventional density gradient centrifugation: a multicentre analysis Journal of Assisted Reproduction & Genetics, 2023

P. Villeneuve et al., Spermatozoa isolation with Felix<sup>m</sup> outperforms conventional density gradient centrifugation preparation in selecting cells with low DNA damage, Andrology, 2023

A.J. Hungerford, H.W. Bakos & R.J. Aitken Analysis of sperm separation protocols for isolating cryopreserved human spermatozoa, Reproduction & Fertility, 2023

R. Jayram et al., First recorded normal live birth after ICSI with electrophoretically isolated spermatozoa using the Felix<sup>TM</sup> system, Proceedings of the annual meeting of Asia Pacific Initiative on Reproduction, 2023

S. Kitahara et al., A novel electrophoretic sperm isolation system achieves equivalent ICSI outcomes to the combined density gradient centrifugation and swim-up method in a significantly shorter processing time, Proceedings of the annual meeting of the European Society of Human Reproduction & Embryology, 2024 (Accepted)



#### Memphasys has completed a number of published clinical studies into the use of the Felix<sup>™</sup> device in comparison with more traditional

## FELIX<sup>TM</sup> PROJECT TIMELINES

|         |                                             | 2024      |           |           | 2025      |           |           |           | 2026      |           |           |           |
|---------|---------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|         |                                             | Q2<br>Apr | Q3<br>Jul | Q4<br>Oct | Q1<br>Jan | Q2<br>Apr | Q3<br>Jul | Q4<br>Oct | Q1<br>Jan | Q2<br>Apr | Q3<br>Jul | Q4<br>Oct |
| Pre-TG  | Α                                           |           |           |           |           |           |           |           |           |           |           |           |
|         | Monash Trial                                |           |           |           |           |           |           |           |           |           |           |           |
|         | Japan Felix Trial                           |           |           |           |           |           |           |           |           |           |           |           |
|         | Results Published                           |           |           |           |           |           |           |           |           |           |           |           |
| TGA A   | oproval                                     |           |           |           |           |           |           |           |           |           |           |           |
|         | TGA Submission                              |           |           |           |           |           |           |           |           |           |           |           |
|         | TGA Review                                  |           |           |           |           |           |           |           |           |           |           |           |
|         | TGA Approval                                |           |           |           |           |           |           |           |           |           |           |           |
| India E | xpansion                                    |           |           |           |           |           |           |           |           |           |           |           |
|         | MD-16 requirements (non-<br>manufacturing)  |           |           |           |           |           |           |           |           |           |           |           |
|         | Explore manufacturing options               |           | _         |           |           |           |           |           |           |           |           |           |
|         | Setting up India<br>manufacturing           |           |           |           |           |           |           |           |           |           |           |           |
|         | India manufacturing<br>established CP       |           |           |           |           |           |           |           |           |           |           |           |
| World   | wide expansion                              |           |           |           |           |           |           |           |           |           |           |           |
|         | Begin FDA trial and registration            |           |           |           |           |           |           |           |           |           |           |           |
|         | Begin EU trial and/or registration          |           |           |           |           |           |           |           |           |           |           |           |
|         | Expand into Moderate TGA acceptance markets |           |           |           |           |           |           |           |           |           |           |           |



# FELIXTM Q&A



# 3. <u>RoXsta\*</u> <u>A RAPID IN VITRO</u> <u>ANTIOXIDANT</u> <u>ASSESSMENT</u>

Normal Cell ———

\* Formerly titled 'ROSA'

Free Radicals Attacking Cell

Cell With —— Oxidative Stress

# **OXIDATIVE STRESS**

An imbalance between reactive oxygen species and antioxidant protection within the body



# **THE ISSUE:**

**Oxidative & Reductive Stress – Serious** chemical imbalances

- Oxidative stress an imbalance between reactive oxygen species and antioxidant protection within the body and can also severely affect fertility in both humans and animals.
- <u>Reductive stress</u> an abnormal accumulation of reducing equivalents despite being in the presence of intact oxidation and reduction systems
- Imbalance tends to increase with age and can contribute to serious diseases.





#### **Oxidative stress**

#### **Reductive stress**





- Chronic antioxidant overdosing
- Elevated levels of biochemical reductants
- Reduced testosterone production
- Cellular energy dysregulation





# **THE ISSUE:**

The adverse effect of oxidative / reductive stress imbalance





#### **Reductive stress**

- Heart failure
- Neurogenesis inhibition
- Decreased cellular metabolism
- Muscular dystrophy
- Pulmonary hypertension
- Rheumatoid arthritis
- Alzheimer's disease
- Diminished life expectancy

# **THE SOLUTION - RoXsta:**

A unique product offering

- Development of 4 separate point-ofcare assays, all using the same fundamental device structure to measure different aspects of antioxidant activity and taking as little as 5min to complete
- Provides a complete picture of the ability of a given system/fluid to defend itself against oxidative attack
- Measuring all 4 aspects of oxidative stress in semen provides correlation with sperm motility, vitality and DNA damage



#### • The different stages of the oxidative process, in order, are :





#### **UNMET DIAGNOSTIC NEED:** RoXsta technology can address multiple needs and very large global market

# Current Practice

Testing for oxidative stress is rare:

- Complex equipment
- Time-consuming in lab
- Oxidative stress often undiagnosed
- Late or no clinical intervention





# **ROXSTA DEVICE SCHEMATIC**

#### Principle on which RoXsta works







# Exploded view V

#### Design concept for initial work station – first step before developing fully autonomous system



Cabling, control units and power supply units not shown







#### **COMMERCIAL APPLICATIONS TARGET MARKET AND OPPORTUNITY**

#### User group

**Fertility researchers\*** 

**IVF clinics** 

**Obstetricians** 

**Food technology industry\*** 

**MEM internal use** 

**Other clinician groups** 

**Point of care consumer test** 

**Personalised medicine** 

**Animal Health Industry\*** 

**Cosmetic Industry** 

- Researching underlying etiology
- Screening for infertility issues in r
- Diagnosing and monitoring the
- Screening for food antioxidant ac
- Addition of new, healthy antioxid
- Screening for most powerful antiender reproduction
- Diagnosing and monitoring vario neurological, endocrine etc.
- Assessing antioxidant status at ho
- Ability to titrate individualised lev
- Meat quality, IA and domestic per
- Application of antioxidants for sk

Conservative market size assumptions, based on industry interview estimates



| Application                                                                                          | Estimated<br>Market Size |
|------------------------------------------------------------------------------------------------------|--------------------------|
| of infertility & gestational issues                                                                  | \$3b                     |
| male and female patients                                                                             | \$3b                     |
| progress of pregnancy; detecting foetal distress                                                     | <b>\$4b</b>              |
| ctivity, e.g. to use in product marketing<br>lants to extend food shelf life/improve health benefits | \$3b                     |
| oxidants to develop improved media for human & animal                                                |                          |
| ous health conditions beyond fertility issues e.g. cardiovascular,                                   | TBD                      |
| ome                                                                                                  |                          |
| vels of antioxidants and other drugs to administer                                                   |                          |
| et markets                                                                                           | TBD                      |
| kin and ageing                                                                                       | TBD                      |





# **UPDATE ON DEVELOPMENT**

- Proof of concept established by Prof. John Aitken's research team at University of Newcastle
- Currently lodging IP, granted in 6-9 months
- Proof of concept publications
- External design house currently developing prototype and manufacturing pilot batch initially for research use.
- •KOL engagement and publications to legitimise application.
- Advisory boards with aforementioned business sectors to explore potential landscape and application utility.
- Select high value industries and applications then customise the system to suit







# RoXsta:

#### Pathway to market

|                                   |                                                       |                         | <b>Requirements prior</b>         | r to selling            |                        |
|-----------------------------------|-------------------------------------------------------|-------------------------|-----------------------------------|-------------------------|------------------------|
|                                   | Application                                           | Industry<br>KOL testing | Verification & validation studies | Small<br>clinical trial | Regulatory<br>approval |
| Early sales<br>potential          | Fertility research market                             | $\checkmark$            |                                   |                         |                        |
|                                   | Food industry monitoring                              | $\checkmark$            |                                   |                         |                        |
|                                   | Diagnostic fertility market<br>(male & female)        | $\checkmark$            | $\checkmark$                      | $\checkmark$            | $\checkmark$           |
| Higher regulatory<br>requirements | Pregnancy clinical monitoring                         | $\checkmark$            | $\checkmark$                      | $\checkmark$            | $\checkmark$           |
|                                   | Monitoring for other health conditions e.g., diabetes | $\checkmark$            | $\checkmark$                      | $\checkmark$            | $\checkmark$           |
|                                   | At home monitoring                                    | $\checkmark$            | $\checkmark$                      | $\checkmark$            | $\checkmark$           |



## **ROXSTA<sup>TM</sup> DEVELOPMENT TIMELINE**

|                                                            |                                                                                                                                  | 2024      |           |           | 2025      |           |           | 2026      |           |           |           | 2027      |           |           |           |           |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                                            |                                                                                                                                  | Q2<br>Apr | Q3<br>Jul | Q4<br>Oct | Q1<br>Jan | Q2<br>Apr | Q3<br>Jul | Q4<br>Oct | Q1<br>Jan | Q2<br>Apr | Q3<br>Jul | Q4<br>Oct | Q1<br>Jan | Q2<br>Apr | Q3<br>Jul | Q4<br>Oct |
|                                                            | Prototype testing to select best candidate cartridge                                                                             |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Phase 1:                                                   | Production of 1000 cartridges and test jigs for testing                                                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| cartridge<br>development                                   | Cartridge development<br>completed. Potential sales for<br>research, livestock & food<br>tech applications (low reg.<br>markets) |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| Phase 2:<br>Full device                                    | De-risking optical test jig & prelim performance testing by John Aitken & KOLs                                                   |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| including mini                                             | Development completed<br>(pre-regulatory)                                                                                        |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| spectro-photometer                                         | Potential sales for research,<br>livestock & food tech<br>applications (low reg)                                                 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|                                                            | Device ready for V&V testing                                                                                                     |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| <b>Phase 3:</b><br>V&V + pilot + full<br>release of device | Prelim optics testing by John<br>Aitken                                                                                          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|                                                            | Manufacturing                                                                                                                    |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|                                                            | Reg approval obtained.<br>Release to market for clinical<br>sales                                                                |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |



# ROXSTA Q&A



# **4.** ANIMAL APPLICATIONS – AI PORT



# THE ISSUE: AI technology is antiquated and needs improvement

# **Current Process**





### **AI PORT:** MEM's new protocol to prepare sperm for AI without freezing







## **SPRING '23 STUDY DESIGN**

**FIELD TRIAL AIM:** Achieve pregnancies that are at least as good as those obtained with traditional sperm cryopreservation and AI\*



\*Even a small improvement, on the industry average rate of 40% pregnancy rate, would provide a substantial economic benefit. Source: Industry interviews



# n

# **CROSS-OVER IN PRODUCT DEVELOPMENT**

#### **FELIX SYSTEM**

- Electrophoretic system selects sperm with both low DNA damage & oxidative stress
- Device consists of a console which supplies electricity to a disposable cartridge
- Cartridge contains the novel electrophoretic technology
- Cartridges are single-use with a new one required for each semen sample
- Ongoing, repeat revenue from single-use cartridge

# FELIX<sup>TM</sup>

Better technology for IVF sperm preparation

#### **AI PORT**

- Initial target: beef cattle growing need to improve genetics in high end cattle breeds e.g. wagyu, Black Angus
- Later applications: high end dairy, horse (non-thoroughbred), sheep and pigs
- Capacity to collect and transport at ambient temperature (once tested) should produce a better pregnancy / genetic outcome

AIPORT Increasing animal pregnancy rates, improve DNA, reduce emissions, with ambient temperature AI



# ROXSTA

A rapid in vitro antioxidant assessment

#### RoXsta

- Point of care diagnostic device
- Six-minute process
- Sensitive & accurate
- Wide sample fluid choice:
- Semen, blood, urine, saliva, follicular fluid and spent embryo culture medium
- More accurate disease profiling
- Timely clinical intervention

Cross-over in applications across all 3 products. Development of one product adds value to the other products. In some instances, a suite of products could be offered to industry







# 5. CROSS-OVER DEVELOPMENT EXAMPLE

ANIMAL AI: REDUCING METHANE (CH4) EMISSIONS FROM RUMINANTS THROUGH COST EFFECTIVE ELITE DNA MULTIPLICATION



# **THE ISSUE:**

Methane emissions in livestock

- •Agriculture is projected to be the third largest source of emissions globally by 2030
- Methane emissions from livestock are the largest source of greenhouse gas in the agriculture sector<sup>1</sup>
- The Australian red meat & livestock industry has set <u>a target to be carbon neutral by 2030 (CN30).</u>
- This means that by 2030, Australian beef, lamb and goat production aim to make no net release of greenhouse gas (GHG) emissions into the atmosphere<sup>2</sup>
- Industry is proactively taking action with investment in R&D and particular focus on animal **genetics**

2. Meat & Livestock Australia (MLA)









<sup>1.</sup> Australian Government Department of Climate Change, Energy, the Environment & Water

## WHY IS GENETICS SO IMPORTANT?



1. Bovine Artificial Insemination Market Size, Share & Trends Analysis Report By Solutions (Equipment & Consumables, Semen, Services), By Sector (Meat, Dairy), By Distribution Channel (Private, Public), By Region, And Segment Forecasts, 2023 - 2030 \*Lipid peroxide scavenging, Hydrogen peroxide, scavenging, Free radicle scavenging, Inhibition of free radicle formation



- Shaping emissions intensity in livestock systems will be heavily influenced by genetics as we move toward 2030.
- Increasing production per unit of emission is costly to identify and will be based on a small subset of elite animals.
- The small population of elite animals will need to be cost effectively multiplied while **minimising DNA breakdown currently** caused through conventional artificial **breeding practices.**
- Bovine artificial breeding is worth in excess of **US\$2.9 billion** globally<sup>1</sup>.

# **MEM PRODUCTS COULD BE THE** "GAME CHANGER"

- <u>MEM is developing</u> a process of extending the viability of sperm cells in an ambient temperature receptacle.
- Fresh semen storage via MEM processes aims to reduce the fragmentation (breakdown) of DNA within a sample.
- The capacity to reduce DNA breakdown that occurs compared to conventional practices will extend the ability to multiply elite genetics.
- MEM aims to use RoXsta in conjunction with animal breeding to further enhance the ability to reduce DNA breakdown and improve elite genetic multiplication in a cost-effective <u>manner</u>

\*Lipid peroxide scavenging, Hydrogen peroxide, scavenging, Free radicle scavenging, Inhibition of free radicle formation







# AI PORT / ANIMAL AI Q&A

# 6 FINANCIAL SNAPSHOT



#### **MEMPHASYS FINANCIAL SNAPSHOT:** As at 16/05/2024

| KEY DATA <sup>1</sup> | <b>A\$</b> |
|-----------------------|------------|
| Share price           | \$0.008    |
| Shares on issue       | 1,367.7M   |
| Market capitalisation | \$11M      |
| Cash (31 March 2024)  | \$436K     |

1 Source: ASX website (as at 16/05/2024)





| <b>OWNERSHIP STRUCTURE<sup>1</sup></b> | %    |
|----------------------------------------|------|
| Peters Investments                     | 19.5 |
| A Goodall                              | 12.7 |
| A Coutts                               | 7.0  |
| Тор 20                                 | 62.5 |

| <b>CONVERTIBLE NOTES</b> |                                                              |
|--------------------------|--------------------------------------------------------------|
| Peters Investments       | 3M (at A\$3M face<br>value & maturity as of<br>31 Dec 2024)* |

# **MEMPHASYS:**

#### Set for growth

#### NEW TALENT

- Acting CEO
- Director Business
  Development
- Appointments underpin critical commercialisation of product and markets

#### OPENING MARKETS

- Clear pathways to market for each product
- Commitment from Vitrolife
- Growing sales across multiple markets



#### **UNMET NEED**

 Product R&D strategy exclusively addressing unmet need in global reproductive technology

#### PIPELINE BUILDING

 Prof John Aitken (Scientific
 Director) &
 University of
 Newcastle team
 building a unique,
 high value
 product pipeline





# Thank you

#### **CONTACT INFORMATION:**

Dr David Ali Managing Director and CEO (Acting) Memphasys Limited 30-32 Richmond Rd, Homebush NSW 2140 Australia P +612 8415 7300 E <u>david.ali@memphasys.com</u> M + 61 428794909

W <u>www.memphasys.com</u>

# **APPENDIX**



#### **ARTIFICIAL INSEMINATION (AI)** The most efficient method to improve herd genetics

- Initial target: beef cattle growing need to improve genetics in high end cattle breeds e.g. wagyu, Black Angus
- Later applications: high end dairy, horse\* (non-thoroughbred)
- Capacity to collect and transport at ambient temperature (once tested) should produce a better pregnancy / genetic outcome
- Being able to do this with reduce number of cells may lead to a great pregnancy yield.



| oritable production traits | Degree of heritability |              |              |  |  |  |  |
|----------------------------|------------------------|--------------|--------------|--|--|--|--|
|                            | Low                    | Medium       | High         |  |  |  |  |
| 1othering" ability         | $\checkmark$           |              |              |  |  |  |  |
| rtility                    | $\checkmark$           |              |              |  |  |  |  |
| rth weight                 |                        | $\checkmark$ |              |  |  |  |  |
| ilk production             |                        | $\checkmark$ |              |  |  |  |  |
| owth rate                  |                        | $\checkmark$ |              |  |  |  |  |
| ed conversion ratio        |                        |              | $\checkmark$ |  |  |  |  |
| arbling                    |                        |              | $\checkmark$ |  |  |  |  |
| ature weight               |                        |              | $\checkmark$ |  |  |  |  |
| nissions improvements      |                        | $\checkmark$ |              |  |  |  |  |

# **SPRING '23 CATTLE FIELD TRIAL RESULTS**

- MEM conducted a field trial at a beef cattle stud in the Hunter region using 144 cows and 4 bulls Overall pregnancy rate was low, even with traditional AI (30% compared with industry norm of 50-
- 60%).
- Sperm motilities of 3 out of the 4 bulls were also substantially lower than industry averages, especially for one bull.
- Al-Port achieved a 19% pregnancy rate. Whilst still lagging traditional Al, the rate was a vast improvement over the initial pilot trial of 5%
- Pregnancy rates varied across bulls, with AI-Port slightly outperforming traditional AI on the bull with the highest sperm motility (AI-Port: 8 pregnancies from 24 vs traditional AI: 7 from 24)
- MEM gained valuable insights from this trial and is confident that it can make substantial improvements in the next field trial in 'spring 24, with the aim of matching and possibly beating pregnancy rate of traditional AI.





## **SPRING '24 TRIAL PREPARATION**

Insights gained from the last field trial are being used to prepare for the next trial:

- Provide an on-site lab
  - Uni Newcastle.
  - Seminal plasma is toxic to sperm and must be removed as soon as possible after collection
- Modify trial protocol by introducing cattle exclusion criteria.
  - some to be excluded if they do not pass inclusion selection criteria
- Further optimise media prior to trial, including using RoXsta system to select antioxidants that could be added
- and effect of inhibiting capacitation on sperm vitality and motility in the lab



• Will enable centrifuging of semen at point of collection rather than two-hour transport of semen back to

• Perform health checks on cattle prior to including them in the trial and have sufficient cattle to enable

Institute additional in vitro and in vivo testing prior to trial eg assess embryo development, acrosome reactions